Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations.

نویسندگان

  • T Hermann
  • E Westhof
چکیده

BACKGROUND Metal ions participate in the three-dimensional folding of RNA and provide active centers in catalytic RNA molecules. The positions of metal ions are known for a few RNA structures determined by X-ray crystallography. In addition to the crystallographically identified sites, solution studies point to many more metal ion binding sites around structured RNAs. Metal ions are also present in RNA structures determined by nuclear magnetic resonance (NMR) spectroscopy, but the positions of the ions are usually not revealed. RESULTS A novel method for predicting metal ion binding sites in RNA folds has been successfully applied to a number of different RNA structures. The method is based on Brownian-dynamics simulations of cations diffusing under the influence of random Brownian motion within the electrostatic field generated by the static three-dimensional fold of an RNA molecule. In test runs, the crystallographic positions of Mg2+ ions were reproduced with deviations between 0.3 and 2.7 A for several RNA molecules for which X-ray structures are available. In addition to the crystallographically identified metal ions, more binding sites for cations were revealed: for example, tRNAs were shown to bind more than ten Mg2+ ions in solution. Predictions for metal ion binding sites in four NMR structures of RNA molecules are discussed. CONCLUSIONS The successful reproduction of experimentally observed metal ion binding sites demonstrates the efficiency of the prediction method. A promising application of the method is the prediction of cation-binding sites in RNA solution structures, determined by NMR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

Brownian-dynamics simulations of metal-ion binding to four-way junctions.

Four-way junctions (4Hs) are important intermediates in DNA rearrangements such as genetic recombination. Under the influence of multivalent cations these molecules undergo a conformational change, from an extended planar form to a quasi-continuous stacked X-structure. Recently, a number of X-ray structures and a nuclear magnetic resonance (NMR) structure of 4Hs have been reported and in three ...

متن کامل

Docking of cationic antibiotics to negatively charged pockets in RNA folds.

The binding of aminoglycosides to RNA provides a paradigm system for the analysis of RNA-drug interactions. The electrostatic field around three-dimensional RNA folds creates localized and defined negatively charged regions which are potential docking sites for the cationic ammonium groups of aminoglycosides. To explore in RNA folds the electronegative pockets suitable for aminoglycoside bindin...

متن کامل

Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA.

A variety of drugs inhibit biological key processes by binding to a specific RNA component. We focus here on the well-analysed hammer-head ribozyme RNA that is inhibited by aminoglycoside antibiotics, a process considered as a paradigm for studying drug/RNA interactions. With insight gained from molecular dynamics simulations of the ribozyme in the presence of Mg2+ identified by crystallography...

متن کامل

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 1998